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The modal dynamics of both dark and bright solitons in lithium niobate is already established in Klein-Gordon lattice. For 
small oscillations, the modal dynamics is characterized as bound states, revealed via Associated Legendre polynomial. 
Bose Einstein condensation exclusively takes place around bosonic particles having different wave functions within the 
bound states. This paper tried to explore BEC in the realm of bound state for better understanding of switching 
phenomenon of devices. The pairing and interplay between the dark and bright solitons occur with their effect on the 
condensation. The bound state disappears after a critical frequency. The quasi-particles then become phonons in the 
unbound states that propagate through the domains. 
 

(Received June 28, 2015; accepted October 28, 2015) 

 

Keywords: Bose-Einstein Condensation, Dark and Bright Solitons, Bound State 

 

 

 
1. Introduction  
 

The most outstanding experimental discovery in 

recent times is Bose-Einstein condensation (BEC) in 1995 

[1]. This discovery has triggered both theoretical and 

experimental works on this fascinating topic of research. 

The reasons for these vigorous activities are: a) it gives an 

opportunity to open a new window for a macroscopic view 

of quantum mechanics, and b) it makes such studies most 

lucrative in the field of matter-wave relations. On the latter 

issue, experiments show unusual excitations within the 

wave that is known as solitons. The unusual properties of 

such quasi-particles, i.e. both bright and dark solitons 

(henceforth called bosonic particles or simply particles), in 

a condensate would allow us to manipulate them in 

periodic or other potential. There is some evidence for the 

formation of both dark and bright solitions in the 

condensate, but the concept of bound state still remains 

somewhat illusive, despite a lot of activities on nonlinear 

optical systems that are important for many devices. This 

gives us motivation to study bound state with a connection 

to BEC. Further, we find out both lower and upper bounds 

in relation to frequency and the extent of condensation in 

the bound state. Although we use data on lithium niobate 

ferroelectrics for general theoretical study, it can also be 

extended to other relevant systems, e.g. in magnon system 

with two-well Landau potential [2]. This effort is made 

through Klein-Gordon (K-G) equation which on 

perturbation gives rise to nonlinear Schrodinger equation 

(NLSE) that is a variant of Gross-Pitaevskii equation 

(GPE), which is popular and commonly used for studying 

BEC. 
 K-G equation was developed earlier [3] through 

vibrational principle taking various relevant energies in the 

Landau-Ginzburg (L-G) potential in the continuum 

Hamiltonian. Recently, this was extended to ferroelectrics 

using one dimensional array of domains to probe 

localization for intrinsic localized modes [4]. An effective 

mechanism of ‘energy localization’ in K-G lattice, arising 

out of the discreteness and non-integrability of the system, 

was presented by Bang and Peyrard [5]. Very recently, a 

perturbation on the continuum K-G model through 

progressive wave NLSE [6] showed both bright and dark 

solitons with ‘discrete energy levels’, estimated via 

hypergeometric function. This dark soliton with low 

energy and lower velocity is not visible as it is part of the 

complex solution indicating the presence of an energy-gap. 

In this communication, for these solitons, our main focus 

lies on the bound state in the low frequency limit in the 

context of BEC. A critical frequency is also shown beyond 

which the phonon takes over in the unbound states in the 

high frequency regime.     

 There are excellent reviews on BEC in the vast ocean 

of literature, notably Ref [1]. An excellent work was done 

by Kivshar et al on solitons in nonlinear optics [7]; the 

dynamical generation and control of both bright and dark 

solitons in matter-wave BEC in optical lattices were 

extensively studied by several authors (see Ref. [7]). In 

this context, a review on dark solitons in atomic BEC by 

Frantzeskakis and Kevrekedis et al [8] also needs a 

mention. In atomic optics, the formation of coherent 

molecular BEC was explained in one-dimension by mean 

field theories of parametric nonlinearities that convert two 

solitons to one (and vice-versa) for non-integrable 

equations [9]; molecular BEC was invoked for a new type 

of reaction between molecules (multispecies) to engineer 

condensates of heavier molecules where macroscopic 

occupation of single molecular quantum state gives rise to 



1886                                                                                     A. Biswas, Y.M Song 

 

the coherent bosonic stimulation (see Ref. [9]).  BEC was 

also reported on 10
5
 Li2 molecules in an optical trap with 

spin mixture of fermionic Li atoms by measuring a 

collective excitation mode [10]. This gives us further 

motivation to explore BEC in the realm of bound state that 

might help towards better understanding of switching 

phenomenon in a vast area of devices including many 

nano devices. Now, let us look at the potential and the 

bound states. 

 

 

2. Theoretical development 
 

The free energy density for the order parameter (P) 

can be written in L-G form: 
2 4

1 2( / 2) ( / 4)G P P    . Where, ’s are Landau 

coefficients and here P is also a function of space. Now, 

3

21 PPE
P

G
 




. Here, E is the intrinsic field 

and all the terms are non-dimensional; The relevant values 

in the context of a ferroelectric system is given in Ref. 

[4,6]. The 2
nd

 derivative of Landau energy is: 

 

2
_

2

_

1 3/)( PEEPg c    (1) 

 

Where, Ec is the switching field in kV/cm. Let us consider 

an idealized one-dimensional array of N identical 

rectangular domains along the x direction. Between the 

neighboring domains, there is domain wall and nearest 

neighbor coupling (K) is considered. For the mode 

dynamics of the extended modes and modes that are 

localized, nonlinear K-G equation relating P against space 

(x) and time (t) with a non-dimensional driving field (E0) 

is [3,6]: 

 
2 2_ _ _

3

1 2 02 2
0

P P
K P P E

t x
 

 
    

 
     (2)  

 

K-G equation is a well-known equation of mathematical 

physics that exhibits a variety of interesting properties 

with applications in different physical systems [5,11]. K-G 

equation is useful for both dark and bright discrete 

breathers that throw light on quantum localization [11-13]. 

For highly localized modes in K-G lattice, bright soliton 

solutions have also been used for nonlinear dynamics of 

DNA [5]. Due to the localization, the length scale of 

excitation assumes more significance that obviously drives 

us to the nano domain, whose importance in the field of 

solid state physics cannot be denied.  Next, let us go for 

the solutions: In the continuum limit, let P be the solution 

of Eq. (2) that is replaced by ( ) ( , )P P x f x t  . Here, 

P(x) and f(x,t) are the functions of x and (x,t) respectively. 

From physics point of view this combination describes a 

periodic kink which, a priori, can experience the presence 

of phonons about its center of mass regardless of its 

dynamical property [14]. Thus, the resulting eigenvalue 

equation will be governed by a linearized problem. Let us 

write the space dependent equation: 

 
2_ _ _

3

1 22

( )
( ) ( ) 0

P x
K P x P x

x
 


   


           (3) 

 
Before describing our main focus area, let us briefly 

talk about a different approach of using Lame equation for 

the bound states [15]. Although the context is different, by 

deriving Jacobi elliptic function from Eq. (3) and using 

Eq. (1) as the index 1, we get a series of bound states, 

but their stability could not be assured with the Jacobian 

form of Lame equation (see Appendix A). Here, we use 

Associated Legendre Polynomial (ALP) to reveal a much 

richer physics by showing stable “upper and lower 

bounds”. To note that for light-induced waveguide Segev 

et al. [16] used ALP function for modal composition of 

incoherent spatial solitons in nonlinear Kerr medium. 

Now, we go for the spatio-temporal equation: 

       
2 2_

02 2

( , ) ( , )
( ) ( , ) 0

f x t f x t
K g P f x t E

t x

 
   

 
                (4) 

 

Here, P(x) given in Eq. (3) is the static single ‘kink’ 

solution (not discussed here) with a form: 

( ) tanhP x qx , where, 
_ _

1 / (2 )q K . Using this 

form of P(x) and taking 
_ _

1 2  in Eq. (1), we have 

 

 
_ _ _

2 2

1 2 1( ) 3 tanh 2 1 (3 / 2)secg P qx h qx       

   (5) 

 

g(P) varies mainly in the region of the kink centre 

(assumed to be at x=0) and approaches a constant value 

(taken to be unity) far from the kink centre, and also g(P) 

< 0 at x = 0. For small oscillations (E0  0), ( , )f x t  is 

written as: ( , ) ( ) i tf x t x e    (ω= angular frequency). 

Hence, the eigenvalue equation is: 

 

2_ _
2

12
3 secK h qx X

x
  

 
  

 
 (6) 

 

X is the eigenvalue of the system defined as: 
_

2

1(2 )X    . Eq. (6) is identical with the 

Schrodinger equation for a particle moving in one-

dimensional potential well (g(P)). This is considered as a 

variant of GPE. So, the bound and unbound states can be 

observed for this potential. For bosonic particles, let us 

introduce ALP to estimate the frequency of non-

degenerate states with different wave functions. For 

soliton dynamics, in the low frequency range, the bound 
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state will predominate, when condensation takes place and 

in the higher range, the phonon mode takes over in the 

unbound state, and here these are the main issues. Let us 

introduced a new variable: tanhz qx , then Eq. (6) 

becomes 

 
2 2

2

2 2
(1 ) 2 ( 1) 0

1

m
z z n n

z z z

 


  
      

   

 (7) 

 

Where, 
_ _

2 2

1 12 / 4 (2 / )m X      . The solution 

of Eq. (7) is: 
2 ( )mp z  . In the bound state,  is 

denoted as b and wave function   as b. If 

_

10 2b   , then ‘m’ is real and ALP is only valid 

if n=2. The existence of different states is considered in 

the bound state in this limited range of frequency or 

energy. Here, all our solutions are ‘real’ and ‘stable’ in 

terms of interplay between the mode index and the 

frequency. When the bound state frequency, 

_

12b  , ‘m’ will be imaginary. Under this 

condition, ALP is not valid, i.e. the bound state disappears. 

This is considered as a “critical” limit of frequency for the 

‘upper bound’. The impact of this critical limit on 

condensation is shown at the end of Section III.  

 

3. Results and Discussion 
 
The ‘lower bound’ of the non-degenerate state is at   

b = 0 for which the wave function (b) with translation 

symmetry gives rise to Goldstone mode (GM) for m = 2: 

 

2 2

2 ( ) 3secb P z h qx      (8) 

 

To note that bright solitons predominate. This wave 

function for bosonic particles is not shown here, as it 

simply shows a typical Gaussian band. The wave functions 

for other symmetries of GM were not worked out to 

remain within our main focus on the bound state and BEC 

formation. As the frequency increases to: 

_

1(3 ) / 2b  , the system starts showing polarization 

within a band of m = 1, whose wave functions are: 

 
1

2 ( ) 3tanh .secb P z qx hqx        (9) 

 
1

2 ( ) (1/ 6) tanh .secb P z qx hqx       (10)  

 

To note that both dark and bright solitons exist, and a 

pairing or coupling has started in the system. A small 

number of particles become polarized in opposite 

directions with the above value of eigenfrequency. Wave 

functions, as per Eq. (9) and (10), are shown in Fig. 1a and 

Fig. 1b respectively indicating that these behaviors 

manifest in both + and – directions starting at zero. 

Finally, the wave function for the ‘upper bound’ of the 

non-degenerate state with the limiting frequency 

_

12b  is: 

2(1/ 2)(3tanh 1)b qx     (11) 

 

 

 
Fig. 1: The wave function (b) for the quasi-particle, (a) As per Eqs. (9), when m = +1. The behavior is seen to 

move towards positive direction starting at zero. (b) As per Eqs. (10), when m = -1. The behavior is seen to move 

towards opposite direction starting at zero, compared to that in Fig. 1a. 

 

 

 

 

To note that dark solitons have completely taken over, 

before going to the unbound state. After clearly observing 

both lower and upper bounds [Eq. (8) and (11)], we extend 
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our results for both dark and bright solitons through a 

compact operator that is designed to evaluate the 

frequency for a chosen wave function. Following Eq. (6), 

the eigenvalue equation can be written as: 
b bL X  . 

Here, 
_

2

1(2 )X     is the eigenvalue of the wave 

function b operated by the operator L as: 

( )
2

X
L L L L L        (12) 

 

Where, 
_ _ _

1/ (3 / )secL K X K hqx i
x



 
  

 

 

and
_ _ _

1/ (3 / ) secL K X K hqx i
x



 
  

 

.                                                         

With this compact form, let us deal with the solitons as a 

preamble to our discussion on the BEC formation and 

number density. 

For static dark soliton, the above eigenvalue equation 

contributes to the wave function with translation symmetry 

as: 0 tanhb N qx  . This spatial relation is valid in 

the bound state within the corresponding frequency. Here, 

N0 is the total number of bosonic particles. From the above 

operator (Eq. 12), this idea leads to the dispersion relation 

for small oscillations: 

 
_

2

12 tanhb qx    (13) 

 

The solution of Eq. (4) leads to the spatio-temporal 

wave function: 0( , ) tanh . i t

bf x t N qx e  . The dark 

soliton wave function and the frequency (Eq. 13) are 

plotted against spatial dimension in Fig. 2a. For BEC 

formation around bosonic particles at very low frequency, 

it is noted from Fig. 2a that the frequency curve touches 

the dark soliton wave function at zero frequency giving the 

signature of BEC, and also the dip of frequency curve does 

not cover up the dark soliton wave function (but merely 

touches it). Let us now describe the bright soliton. 

 
Fig. 2: For small oscillations in the bound state for a coupling value= 4, (a) The frequency dispersion relation and 

the dark soliton wave function behavior. The frequency curve is seen to touch the wave function for the dark soliton 

at zero frequency giving the signature of BEC. Below and above this coupling value, the frequency curve does not 

coincide with the dark soliton behavior. (b)The frequency curve is seen to fully cover up the wave function  peak  for  

the bright soliton indicating full condensation at Goldstone Mode frequency. 

 

The bright soliton wave function is:                           

 using the above operator (Eq. 12) 

with the spatial dispersion relation: 
_ _ _

2 2 2

1 1 12 2 sec 1/ 2 2 tanh 1/ 2b h qx qx       

    (14)  

 

It is seen that the energy is lower than that of dark soliton. 

Now, the solution of equation (4) is: 

0( , ) sec . i t

bf x t N hqx e  . Similar to Fig. 2a, here 

we also plot bright soliton wave function and the 

frequency (Eq. 14) in Fig. 2b. This shows that the dip of 

frequency is able to fully cover up the peak of the bright 

soliton wave function. As shown below, bright soliton is 

totally condensed, since its energy is lower than that of 

dark soliton by –(1/2), comparing Eq. (14) and (13). These 

figures seem to indicate a ‘pairing’ of two solitons. 

Various possibilities of conversion from dark to bright 

solitons (and vice-versa) and pairing within them occur in 

the bound state. Having discussed both dark and bright 

solitons, and their ‘interplay’, let us show the evidence of 

BEC. 

It is considered that within the limited frequency 

range, the condensation takes place, as per the dispersion 

relations. Due to bosonic particles within the bound state, 

their amplitude can be expressed by number density. In the 

context of matter-wave relation, as the frequency starts 

increasing, the dark solitons seem to ride on the back of 

bright solitons, which are totally condensed at zero 

frequency. Hence, some particles are considered as 

remaining outside the ‘condensate’. The probability of 
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finding these “free particles” is: 
*

0b bf f N N  , and by 

taking the dark soliton wave functions we derive 
2 *

0 0tanh b bN qx f f N N   . Where, N is the 

condensed particle density. This is re-written as: 

  2

01 ( / ) tanhN N qx  . Below BEC transition (for a 

finite temperature) using the dispersion relation (Eq. 13), 

the form of BEC relating number density and the 

frequency is: 

 
_

2

0 1( / ) 1 ( / 2 )bN N     (15) 

 

Although dimers of bosons decay with time, the 

fermionic 
6
Li dimers show remarkable stability with 

lifetimes far longer than those for elastic collisions and 

thermalization [10,17]. In important nonlinear optical 

systems, such as lithium niobate or tantalate, as per Ref. 

[11], the pentavalent niobium or tantalum atoms are sitting 

in their positions (in terms of the double-well Landau 

potential) due to cooperative effect, whereas Li atom tends 

to play a tricky (?) role in that it goes up and down from its 

equilibrium position and thereby, intuitively speaking, it 

may drive the bosonic particles for some kind of 

conversion to take place. This might inspire the 

‘experimentalists’ to work with larger molecules 

(multispecies) containing lithium [9,10]. As shown below, 

when the frequency increases the particles in the 

condensate decreases (Eq. (15)). Here, the Landau 

coefficient (read, nonlinearity) assumes more significance. 

The number density of BEC is shown against frequency in 

Fig. 3. It is seen that at b=  , at a value of Landau 

coefficient of 353.42 (equivalently at 0.133 mole% 

niobium antisite defect at a switching field of 40kV/cm) 

[6], N/N0 goes to zero at upper bound. For ‘quantum 

breathers’ by quantizing discrete K-G Hamiltonian with 

Bosonic operators, a quantum pinning transition was 

observed at 40 kV/cm under periodic boundary condition 

in the ‘phonon hopping coefficient’ vs. impurity plot in 

lithium niobate [12].  

At Goldstone mode (b = 0), all the bright solitons get 

condensed (Fig. 2b) in the bound state as per Eq. (8). For 

_

1b   ,  N = N0/2, which means that half of the 

number density of particles is condensed, i.e. the number 

of uncondensed particles (dark solitons) starts increasing. 

As the frequency in the system further increases to: 

_

1(3 / 2)b  , 1/4
th

 of particles is condensed and 

3/4
th

 of the number density are still in the bound state, also 

revealing polarized particles in the opposite directions at 

m=1, as per ALP formalism. This could be construed as 

the origin of polarization vis-à-vis bound state just below 

the upper bound. 

 
 

Fig. 3: The number density of BEC is shown against 

frequency. It is seen that at b =  =26.59 (non-

dimensional) that has to be divided by 10-9 second.  This 

frequency is for Landau coefficient of 353.42, when the 

fraction of BEC condensation (N/N0) goes to zero, and 

this frequency is considered as the ‘critical limit’ beyond 

which there is no more condensation of bosonic particles 

in the system, i.e. at or beyond the upper bound of the 

bound   states,  when  phonon  propagation  starts  in  the  

unbound state. 

 

 

Finally, at criticality, 
_

12b  , the bound state 

totally disappears, and no particle can be condensed 

anymore in the system. Thus, in the context of BEC, the 

ALP formalism (Eq. 8 to 11) is quite noteworthy. At this 

criticality, the spatial extent (i.e. equivalent to dimer-dimer 

distance=0.6a as per Petrov et al [10], where a=scattering 

length) is estimated to be 104 nm, and 15 nm for 75% 

condensation; for Li2 molecular BEC, a varied from 116 to 

185 nm, as per Jochim et al [10]. Note that with decreasing 

condensation, a increases thereby indicating the dark 

solitons are going apart. With the compact operator, the 

number density of bosons is clearly related to the 

frequency, which has not been attempted before, and BEC 

exclusively forms within this bound state. Above critical 

limit, the phonon is dominant in the system in the unbound 

state. In the wave function of phonon, if we put the 

propagation constant k= 0, we get back the bound state 

solution at the “critical limit” (Eq. 11), which implies 

“localization” at lower energy that again indicates a richer 

physics (see Appendix B). 

 

 

4. Conclusions 
 

Bose-Einstein condensation is shown in the realm of 

bound state that disappears after a critical frequency and 

thereafter no more condensation in the system. Within the 

bound state, the ‘interplay’ between the dark and bright 

solitons increases the former reducing the condensate 

density. Also, the phonons start propagating within the 
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system in the unbound state at higher energy, when 

scattering becomes important. 
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Appendix-A: Here, we could also use Lame equation by 

taking the solution of Eq. (3) as: 

_

1

_2
2

22
( ) ,

(1 )
(1 )

P x l Sn x l
l

K l


 
 


   
 

 (3a) 

Here, Sn is the ‘Jacobi elliptic function’ of modulus l with 

0  l  1. The above equation is a periodic kink soliton that 

is static. In the limit l  1, for the infinite length kink 

solutions, the elliptic function becomes hyperbolic 

function as: P(x) = tanh qx (q defined in the text). Such 

solutions can be obtained by using the 2
nd

 derivative of the 

Landau energy (Eq. (1)), and we could get a series of 

bound states by deriving Jacobian form of ‘Lame equation, 

while the question of their stability could not be tackled. 

Appendix-B: Having shown BEC in the lower regime 

of frequency in the bound state, it is natural to look for 

what happens in the unbound state. After the above critical 

limit of frequency, the switchover of bound  unbound 

state takes place and all the quasi-particles as ‘phonons’ 

will propagate in a given domain region in the system and 

through the domain wall. The phonons will propagate 

through the system with strong dispersion relation as:  

 
_ _

2 2 2

12P k K q     (16)   

 

Where k is the propagation constant and now b has to be 

replaced by phonon frequency (P). It is convenient to use 

Eq. (16) in Eq. (6) that produces phonon solutions for 0  

k   without using the normalized constant of 1/(3) as:   

 

 2 2 2(1/ 1 ) 3tan 3 tanh (1 ) ikqx

P k h qx ik qx k e     

   (17) 

 

This solution indicates propagation through one-

dimensional array of domains in x direction. The complex 

conjugate of the above function for waves that propagate 

through the system along the x direction is expressed as: 

 

 * 2 2 2(1/ 1 ) 3tan 3 tanh (1 ) ikqx

P k h qx ik qx k e
     

      (18) 

 

In the wave function of phonons in the unbound state, 

if we put k= 0, we get the bound state solution at the 

“critical limit” (Eq. 11), which implies “localization” at 

lower energy that again indicates a richer physics. When 

phonons pass through the nonlinear optical medium, they 

encounter scattering in the vicinity of domain wall. Here, 

the Green function has a role to play in explaining this 

scattering in which phonons get shifted from one point to 

another point that should be the subject matter of future 

work in revealing the switching behavior in such systems.  
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